Symmorphosis and the insect respiratory system: a comparison between flight and hopping muscle.
نویسندگان
چکیده
Weibel and Taylor's theory of symmorphosis predicts that the structural components of the respiratory system are quantitatively adjusted to satisfy, but not exceed, an animal's maximum requirement for oxygen. We tested this in the respiratory system of the adult migratory locust Locusta migratoria by comparing the aerobic capacity of hopping and flight muscle with the morphology of the oxygen cascade. Maximum oxygen uptake by flight muscle during tethered flight is 967±76 μmol h(-1) g(-1) (body mass specific, ±95% confidence interval CI), whereas the hopping muscles consume a maximum of 158±8 μmol h(-1) g(-1) during jumping. The 6.1-fold difference in aerobic capacity between the two muscles is matched by a 6.4-fold difference in tracheole lumen volume, which is 3.5×10(8)±1.2×10(8) μm(3) g(-1) in flight muscle and 5.5×10(7)±1.8×10(7) μm(3) g(-1) in the hopping muscles, a 6.4-fold difference in tracheole inner cuticle surface area, which is 3.2×10(9)±1.1×10(9) μm(2) g(-1) in flight muscle and 5.0×10(8)±1.7×10(8) μm(2) g(-1) in the hopping muscles, and a 6.8-fold difference in tracheole radial diffusing capacity, which is 113±47 μmol kPa(-1) h(-1) g(-1) in flight muscle and 16.7±6.5 μmol kPa(-1) h(-1) g(-1) in the hopping muscles. However, there is little congruence between the 6.1-fold difference in aerobic capacity and the 19.8-fold difference in mitochondrial volume, which is 3.2×10(10)±3.9×10(9) μm(3) g(-1) in flight muscle and only 1.6×10(9)±1.4×10(8) μm(3) g(-1) in the hopping muscles. Therefore, symmorphosis is upheld in the design of the tracheal system, but not in relation to the amount of mitochondria, which might be due to other factors operating at the molecular level.
منابع مشابه
Symmorphosis and the insect respiratory system : a comparison 3 between flight and hopping muscle 4 5
12 13 SUMMARY 14 Weibel and Taylor " s theory of symmorphosis predicts that the structural components of the 15 respiratory system are quantitatively adjusted to satisfy, but not exceed, an animal " s maximum 16 requirement for oxygen. We test this in the respiratory system of the adult migratory locust Locusta 17 migratoria by comparing the aerobic capacity of hopping and flight muscle with th...
متن کاملSymmorphosis and the insect respiratory system: allometric variation.
Taylor and Weibel's theory of symmorphosis predicts that structures of the respiratory system are matched to maximum functional requirements with minimal excess capacity. We tested this hypothesis in the respiratory system of the migratory locust, Locusta migratoria, by comparing the aerobic capacity of the jumping muscles with the morphology of the oxygen cascade in the hopping legs using an i...
متن کاملComparison of Respiratory Muscle Electromyography between Adolescent Idiopathic Scoliosis and Healthy Subjects
Purpose: Scoliosis is one of the most common spinal deformities that affect chest wall mechanics. Scoliosis results in ventilator disorders and respiratory muscle weakness. However, the mechanism of these disorders is still unknown. The main objective of this study was to identify the intensity of respiratory muscles activity in patients with idiopathic scoliosis compare with healthy indi...
متن کاملThe concept of symmorphosis: a testable hypothesis of structure-function relationship.
The hypothesis that, in biological organisms, structural design is matched to functional demand is difficult to test because it is largely based on anecdotal evidence suggesting economic design. The hypothesis of symmorphosis postulates a quantitative match of design and function parameters within a defined functional system; because of its stringency it is refutable and can, therefore, be subj...
متن کاملPower and efficiency of insect flight muscle.
The efficiency and mechanical power output of insect flight muscle have been estimated from a study of hovering flight. The maximum power output, calculated from the muscle properties, is adequate for the aerodynamic power requirements. However, the power output is insufficient to oscillate the wing mass as well unless there is good elastic storage of the inertial energy, and this is consistent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 215 Pt 18 شماره
صفحات -
تاریخ انتشار 2012